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1. INTRODUCTION

The purpose of this paper is to introduce a concept of sequential con
vergence in the space of Riemann integrable functions (in the classical
sense) and to discuss some consequences in approximation theory. In fact,
our approach originates in work of P6lya [12] on the convergence of
quadrature formulas.

In [12] P6lya first treated necessary and sufficient conditions for con
vergence of quadrature formulas for continuous functions. From an
abstract point of view this is covered by the theorem of Banach-Steinhaus.
P6lya then extended the results to Riemann integrable functions. Though
well known, too, this part of his treatment remained somewhat isolated, at
least to our knowledge. Among other things it follows, however, that if one
introduces an appropriate concept of convergence, then also this part of
P6lya's work may be reestablished by an application of a theorem of
Banach-Steinhaus-type.

The notion of convergence in question (for bounded functions of several
variables) is given in Definition 2.1. It not only turns out that the space of
Riemann integrable functions is (sequentially) complete, but continuous
functions are dense in it. The latter fact enables one to discuss
approximation.

In this connection our first topic is concerned with theorems of Banach
Steinhaus-type. Here the situation is rather clarified for (sublinear)
functionals. To this end, Section 3 first relates various concepts of con
tinuity. Then Theorem 4.3 states that a sequence of sublinear, Riemann
continuous functionals converges for each Riemann integrable function if
and only if it converges for each element of a Riemann dense subset and if
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the sequence is equi-Riemann-continuous or continuously Riemann con
vergent. Since, however, point evaluation functionals cannot be Riemann
continuous, this does not yet cover P61ya's result. But it can be shown
(cf. Theorem 4.4) that continuous Riemann convergence, which in fact
reflects the original P61ya condition on the semicontinuity of some
"Intervallvereinfunktion," is the appropriate notion to formulate an
equivalence assertion even for quadrature (cubature) formulas.

Section 5 considers the extension of the classical approximate identity
argument (peaking property) in order to derive a sufficient criterion for the
Riemann convergence of a sequence of operators, mapping the space of
Riemann integrable functions into itself. Since Theorem 5.1 does not
assume any Riemann continuity, applications are even possible if point
evaluation functionals are involved, thus, e.g., to Bernstein polynomials (cf.
Corollary 5.3).

Along the same lines many other topics of approximation theory may
now be extended to Riemann integrable functions. See [lOa-c, 15-17] for
some further material.

2. RIEMANN CONVERGENCE

Let N, IP, IR, C denote the set of natural, non-negative integral, real, and
complex numbers, respectively, and let IR N

, N EN, be the Euclidean N
space with Ixl 2 := LJ= 1 xJ. In the following consider a (fixed, non-trivial)
compact interval [a, b] where a, bE IR N are such that aj < bj • Let V denote
the family of finite unions of (not necessarily closed or disjoint) subinter
vals, also called "Intervallvereine" in [12] or elementary sets in [2, p. 252].
Thus V is an algebra, i.e., In J, I u J, and the complement CI belong to V
if I,JE V.

Concerning integrals, the upper and lower Riemann integrals of fEB =
B[a, b], the space of functions, everywhere defined and bounded on [a, b]
with norm Ilfll = Ilflln :=sup{lf(x)1 :XE [a, b]}, are denoted by

Jf:= I f(x)dx,
[a.b]

ff:=J f(x)dx,
- -[a,b]

respectively. By Riemann's criterion fEB is Riemann integrable on [a, b],

i.e., fER = R[a, b], if and only if If =Jf, in which case one has for the
Riemann integral, -

f f :=f f( x) dx =Jf (= f f).
[a,b] -
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For arbitrary A c [a, b] let XA be the characteristic function, Le., XA(X)= 1
if x E A and =0 otherwise. The outer and inner Riemann measure (Jordan
content) may then be defined by

fi(A) :=JXA = inf {/l(I): lEV, I ~ A},

respectively, where /l(I) := JXI is the elementary content. Note that A is
Riemann measurable if and only if fi(A) = /l(A). In this case XA E R and the
Riemann measure of A is given by /l(A) =-J XA·

Clearly, C eRe B where C = C[a, b] is the space of continuous
functions on [a, b]. In fact, each of these spaces, thus in particular R, as
endowed with 11·11, is a Banach space. But this norm is not appropriate for
approximation in R since, e.g., C is not dense in R. This disadvantage is
avoided by the following concept of sequential convergence, in fact even
well-defined on B.

DEFINITION 2.1. A sequence Un} C B is called (Riemann) R-convergent
to IE B (in notation, R-lim In = f) if, lor n -+ 00,

Il/n II = (9( 1),

Jsup Ilk - II = o( 1).
k~n

(2.1 )

(2.2)

Obviously, (2.1) ensures the_existence of the integral in (2.2). Moreover,
R-convergence is linear since JIII is a seminorm on B. In the following,
In L0 denotes a sequence In E V with In+ 1 C In and /l(In) = 0(1).

PROPOSITION 2.2. Let Un} C B satisly (2.1) and let IE B. The lollowing
assertions are equivalent (n -+ (0):

(i) R-limn~ooln=f

(ii) For each t: > 0,

fi( {XE [a, b]: sup I/k(x) - l(x)1 ~ t:}) = 0(1). (2.3)
k",n

(iii) Lebesgue almost everywhere on [a, b],

cr(sup Ilk - II, x) = o( 1),
k~n

(2.4)
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where a is defined for g E B and x E [a, b] by

a(g, x):= inf sup Ig(y)l.
J>O YE[a,b]

Lv-xl <J

(iv) For each e > 0 there exists In! 0 such that

(2.5)

Ifn(x) - f(x)1 < e

Proof For abbreviation set

hn :=sup Ifk-fl,
k~n

B~:= {XE [a, b]: hn(x)~e}.

Then (i) implies (ii) since for e > 0,

On the other hand, if (ii) is fulfilled, then for each e> 0,

so that (i) follows in view of (2.1), (2.3).
Concerning (ii)~ (iii), let us first show that (A denotes the closure of A)

B~ c C~ := {XE [a, b]: a(h n , x) ~ e} c B~2. (2.6)

Indeed, if x E B~, then for each <5 > 0 there exists Z E B~ with Iz - xl < <5.
Thus x E C~ since

sup hn(y)~hn(z)~e.
Iy-xl <J

Moreover, x E C~ implies that for any <5 > 0 there is y E B~2 with
Iy - xl < <5, thus x E B~2. Let vA denote the boundary of A c [a, b]. Then
ji(vA) = ji(A) - Ji(A) (cf. [2, p. 256]) so that ji(A) ~ ji(A) ~ 2ji(A). Since A
is compact, one- also has ji(A) = .A:(A) with outer Lebesgue measure .A: (cf.
[2, p. 259]). In view of (2.6) this implies that (2.3) is equivalent to
.A:(C~) = u( 1) for each e > 0, thus if and only if

00 00

A:={xE[a,b]: infa(hn,x»O}= U n c~/m
ne"J m=l n=l

is of Lebesgue measure zero, hence (iii) since a(hn , x) decreases.
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If (iv) is satisfied, then B~cIn since CIncCIk for k~n, thus (ii) follows
in view of Jl(In) = 0(1). On the other hand, if .u(B~) = o( 1), there exists
I nE V with B~ c I n and Jl(Jn) ~ .u(B~) + lin. Setting In := nk = I Jk E V, one
has In+1 =InnJn+1 so that In!O and

This yields (iv). I

At this point let us compare the Riemann convergence with the usual
ones of Lebesgue theory. First of all, the use of the monotone quantity
SUPk '" n Ifk - fl compensates the missing countable additivity of the algebra
of Riemann measurable sets. In many proofs the equiboundedness (2.1)
serves as a substitute for arguments, based on Lebesgue dominated con
vergence. Obviously, uniform convergence, i.e., convergence in B-norm,
implies R-convergence. On the other hand, R-convergence as induced on R
in particular implies J Ifn - fl = o( 1), thus convergence in L l(a, b)-norm.
In fact, (2.1), (2.2) strengthen L I-convergence on R to ensure that limits
continue to stay in R (cf. Theorem 2.5). Moreover, pointwise convergence
Lebesgue almost everywhere is a consequence of (iii), thus of R-con
vergence. Assertion (ii) may be compared with convergence in measure and
(iv) with almost uniform convergence.

Of course, the structure of the two conditions (2.1), (2.2) is also connec
ted with abstract concepts like those of two-norm convergence or Saks
spaces (cf. [1,11]).

Note that Definition (2.5) is closely related to that of the oscillation

o(g, x):= inf sup{lg(y)- g(z)l: y, ZE [a, b], Iy-xl <<5, Iz-xl <<5}.
b>O

(2.7)

In this connection Conditions (ii) and (iii) look rather similar to the two
versions of Lebesgue's theorem concerning Riemann integrability (cf. [2,
pp. 230, 259]).

As in Lebesgue theory the limit of an R-convergent sequence is not
unique so that the following gives rise to the introduction of the
equivalence classes

[f]:= {gEB:J If - gl =o}. (2.8)

LEMMA 2.3. Let f, g, fn EB with R-lim fn = f Then R-limfn = g if and
only if g E [f].
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Proof The equivalence immediately follows by the inequalities

J If - gl ~J sup If - fkl + J sup Ig- fkl,
k~n k~n

J suplfk-gl~J sup Ifk-fl +Jlf-gl. I
k~n k~n

Obviously, each R-convergent sequence Un} c B is an R-Cauchy
sequence, i.e., satisfies (2.1) and

lim J sup Ifj- fk 1= O.
n-oo j,k~n

In fact, the converse is valid as well.

PROPOSITION 2.4. B is (sequentially) R-complete.

Proof Let Un} c B satisfy (2.1), (2.9). Setting

f(x) := lim sup fn(x),

it follows by (2.1) that fEB with

Ifk(X) - f(x)1 ~ sup Ifk(X) - fj(x)1
j~n

In view of (2.9) this yields (n -.. CJJ)

(n EN).

(2.9)

(2.10)

J sup Ifk- fl ~J sup Ifk- fjl =0(1),
k~n ~k~n

thus R-lim fn = f I
As already mentioned, it is useful to have R-convergence well-defined on

the whole set B, but R-convergence turns out to be particularly significant
when considered on the subset R.

THEOREM 2.5. R is (sequentially) R-complete. Moreover, [f] c R if and
only if fER.

Proof Let Un} c R be an R-Cauchy sequence. By Proposition 2.4 Un}
is R-convergent to some fEB. To show that even fER, by Riemann's
criterion (d. [2, p. 254])
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thus fER. Moreover, if g E [f] with fER, then

0:::; (J -D(f - g):::; 2JIf - gl = 0,

71

thus f - g E R, and therefore g E R, too. I
From the point of view of approximation, the most important feature of

R-convergence is the fact that the R-closure of standard classes of smooth
functions yields R (and not B). In fact,

THEOREM 2.6. C is R-dense in R.

Proof Obviously, one may restrict oneself to the unit cube
[a, b] = [0, I], 1:= (1, ..., l)E IR N. For one-dimensional tE [0,1] define

._ {l- li -nt l ,
gjn(t).- °,

so that gjn is continuous with

n

L gjn(t) = 1
j~O

Ij-ntl:::;l
else

(tE [0,1]).

(2.11 )

(2.12)

N

Gin(x) := TI g~n(x),
j=l

Then Tn is a positive, linear operator with (cf. (2.12))

n n

Tn1= L Gin = L giln'" L giNn=1.
,. E Tn ;} = 0 iN = 0

(2.13 )

Now let fER. To show that the continuous functions gn:= T2nf are
R-convergent to f, first of all note that II Tn/II :::; Ilfll (cf. (2.13)), thus (2.1).
In view of Riemann's criterion,

ie rn-l

Min/:= sup f(x),
xeSi"

minf:= inf f(x),
xeSi"

Sin := [i/n, (i + I)/n] denoting the subintervals of the given equidistant
partition. For e> °and
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2
ji(A n)= L n-N~_ L (Minf-minf)n-N=2f>n/e=Q(I).

Minf-m;nf~E;/2 e ieFn-l

(2.14 )

On the other hand, if x E CAn, there exists ioErn _ 1 such that XES ion and
Mionf -mionf<e/2. Then Gin(X) #0 only if i/nESion ' Therefore (cf. (2.13))

ITnf(x) - f(x)1 ~ L IfU/n) - f(x)1 Gin(x)
ilne Si(yt

~ L (Mionf - mionf) Gin(x) < e/2.
i/n E: Sjon

Now consider the subsequences T2n and A 2nE V. Since {Si,2n: iEr2n_d
corresponds to a refining family of partitions, A 2n! 0 by (2.14) with

Hence condition (iv) of Proposition 2.2 is satisfied and the assertion is
shown. I

Let us emphasize that the continuous functions gn = T2nf, approximating
fER, are defined via the multivariate spline operator Tn' the knots of
which are independent of f So this constructive proof yields a first
approximation process. Moreover, with a slight modification to gjn in
(2.11), for example, gjn := X[jln,(j+ 1 lin)' the above proof delivers

COROLLARY 2,7, The set of step functions

g= ~ rt.XlL.. J )
finite

is dense in R.

Summarizing, Theorems 2.5, 2.6 finally justify the terminology: it is R
which not only is R-complete, but, e.g., polynomials are (B-dense in C and
therefore) R-dense in R.

3. FUNCTIONALS ON R

Let R' = R' [a, b] be the set of sublinear functionals F on R = R[a, b],
i.e.,

IFU + g)1 ~ IFfI+ IFgl, 1F(rt.f)I = 1rt.IIFfl, (3.1 )
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for f, g ER, IX E C. Concerning continuity, recall that R is indeed endowed
with two concepts of convergence: uniform convergence (i.e., in B-norm)
and R-convergence. Accordingly, two classes of continuous functionals are
distinguished: R A = R A [a, b], the subclass of functionals, B-continuous at
the origin (IFI is B-continuous on R) or, equivalently, bounded on R,

R A := {FER':IIFII = IIFIIRA :=sup{lFfl :fER, IIfIIB~ 1} < oo}, (3.2)

and R* = R* [a, b], the subclass of functionals, (sequentially) R-continuous
at the origin, i.e.,

R* := {FE R':fnE R, R-lim fn =0 ~ lim Ffn = O}. (3.3)
n--+oo n--+oo

Note that, if FE R* is linear, then F is R-continuous at each fER, thus for
any sequence Un} C R the implication

R-lim fn=f~ lim Ffn=Ff
n--+oo n-i>OO

holds true. Since uniform convergence implies R-convergence, each FE R*
is bounded, thus R* eRA c R'.

With FER A let us associate the functional

F*(I) := sup{ IF(fx,) I:fE R, Ilfll ~ I}

Obviously, F*([a, b]) = IIFII.

(IE V). (3.4 )

LEMMA 3.1. Let FER t,. Then F* is monotone and subadditive on V, i.e.,
for I, JE V,

F*(I) ~ F*(J) (I c J),

F*(Iu J) ~ F*(I) +F*(J).

(3.5)

(3.6)

Proof Let fER with Ilfll ~ 1. If Ie J, then (3.5) follows in view of

IF(Ix,)1 = 1F((fx,) XJ)I ~F*(J)

since X'=X'XJ and Ilfx,II~1. On the other hand, X'uJ=X,+XJ\l for
arbitrary I, J E V so that

F*(I u J) ~ F*(I) + F*(J\I) ~ F*(I) + F*(J)

since F is subadditive. I
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PROPOSITION 3.2. FER' belongs to R* if and only if FER 1\ and

Moreover, lor FE R 1\ the condition

IFII ~K fill (fER)

(3.7)

(3.8)

is sulficient lor FE R*.

Proof Let FER 1\ satisfy (3.7) and assume Un} c R be such that
R-lim In = O. Then Il/n II ~ M by (2.1) and by Proposition 2.2(iv) for any
1»0 there exists InlO with I/n(x)1 ~I> on CIn" This implies

thus Fin = o( 1). To establish the converse, assume that (3.7) is violated, i.e.,
F*(In)~21>0>O for some InlO and all nE N (cf. (3.5)). By Definition (3.4)
there are In E R with II In II ~ 1 and IF(fnX,)1 ~ 1>0' But gn := InXln is R-con
vergent to zero since

Jsup Igk I~Jsup Ilk I X'n ~ J1(In)
k~n k~n

(3.9)

which contradicts FE R*. Concerning the supplement, note that (3.8)
implies

F*(I) ~ sup K f IIx,I = KJ1(I). I
IlfII ,,;; 1

For example, the Riemann integral Qf:= SI is R-continuous by (3.8)
(or, since Q*(I) = J1(I)). On the other hand, the point evaluation functional
at XoE [a, b],

(fER) (3.10)

is certainly bounded (and B-continuous), but Fxo is not R-continuous.
Indeed, for In = X{xo} one obviously has In E R with R-lim In = 0 but
Fxoln= 1.

A sequence {Fn} c R' is called equi-R-continuous if

In ER, R- lim In = 0 => sup IFkIn 1= 0(1).
n_oo keN

(3.11 )
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It follows that indeed SUPk IFkl E R*. A sequence {Fn} c R' is said to be
continuously R-convergent (at the origin) if (cf. [8, p. 197])

In ER, R-lim In=O~Fnln=o(l).
n- 00

(3.12)

PROPOSITION 3.3. A sequence {Fn} c R' is equi-R-continuous if and only
if FnE R* lor each n E Nand {Fn} is continuously R-convergent. Moreover,
continuous R-convergence 01 {Fn} eRA necessarily implies equi-B-continuity
(at the origin), thus the uniform boundedness,

(n EN). (3.13)

Proof Obviously, (3.11) implies (3.12). Conversely, assume that (3.11)
does not hold true so that there exists In E R, R-lim In = 0 such that for
some GO> 0 (at least for a subsequence),

sup IFklnI~ 2Go > 0
kEN

(n EN).

This implies IFkJnl~Go for some knEN. The subsequence {kn} is
unbounded since, if kn ~ K, then

(3.14)

but Fln=0(1) in view of FER*, a contradiction. Hence there is a sub
sequence {knJ, strictly increasing to infinity. Since each subsequence of
{Fn} is continuously R-convergent too, one has Fknfnj = o( 1), in contrast
to (3.14). Concerning (3.13) suppose that IlFn II -+'00. Then there exists
In E R with IIln II ~ 1 and IFnln I -. 00. Since gn:= In/lFnln 11

/
2 is R-con

vergent to zero, in fact even uniformly, and since IFn gn I = IFnIn 1
1
/
2
-. 00,

this violates (3.12). I

PROPOSITION 3.4. A sequence {Fn} c R' is, equi-R-continuous if and only
if it satisfies (3.13) and

sup Fk*(ln) = o( 1)
kEN

(3.15)

Moreover, a sulficient criterion lor (3.11) is given by (3.13) together with
(cf (3.8))

(fER). (3.16)

Proof The assertions are an easy consequence of Proposition 3.2 as
applied to F:= SUPk IFk I since F*(I) = SUPk Fk*(I)· I
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PROPOSITION 3.5. A sequence {Fn} c R" is continuously R-convergent if
and only if it satisfies (3.13) and one of the following properties:

Fn*(In) = 0(1)

lim sup Fk*(In) = o( 1)
k ~ 00

(3.17)

(3.18)

Moreover, (3.12)for {Fn}cR" necessarily implies that the functional

F:= lim sup IFkl
k~ 00

(3.19 )

(n -+ <::JJ).

belongs to R*.

Proof Let {Fn} c R" satisfy (3.12). Then (3.13) is necessary by
Proposition 3.3. Assume that (3.18) is violated. Then there exists In! 0 such
that

lim sup Fk*(In) ~ 280 > 0,
k~ 00

for infinitely many n EN, thus for all n EN by Lemma 3.1. This implies that
there are a subsequence Fkn and elements fn E R with Ilfn II ~ 1 and
IFdfnXJ.) I~ 80' Since gn:= fnXln is R-convergent to zero (cr. (3.9)), the
subsequence {Fk.}, and hence {Fn } too, is not continuously R-convergent,
a contradiction. Now (3.18) implies (3.17) since for a given sequence In!O
one has by Lemma 3.1

Fk*(h) ~ Fk*(In) (k ~ n),

lim sup Fk*(Id ~ lim sup Fk*(In) = o( 1)

That (3.13), (3.17) are sufficient for (3.12) follows analogously from the
first part of the proof of Proposition 3.2 (take F= Fn) so that the
equivalence assertion is established. Concerning the R-continuity of F (cf.
(3.19)), by Proposition 3.2 it is enough to observe that FER" by (3.13)
and that F*(I) ~ lim sup Fk*(I). I

As a typical example let us consider the quadrature (cubature) formula

m

Qmf:= L akmf(xkm)
k~l

(3.20)

which is certainly bounded but not R-continuous (cf. (3.10)). Since

Q':(I) = L lakm I
Xkm EJ

(IE V), (3.21 )
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Condition (3.18) corresponds to the original one of P6lya [12] on the
semicontinuity of the associated "Intervallvereinfunktion"

A(I) := lim sup Q~(I)
m-OC)

(IE V). (3.22)

4. THEOREMS OF BANACH-STEINHAUS-TYPE

Let us start with the classical Banach-Steinhaus theorem as applied to
the Banach space R under B-norm.

PROPOSITION 4.1. For {Fn } c R" let U c R be B-dense in R. Then

(fER) (4.1 )

is equivalent to (3.13) and

(gE U). (4.2)

Of course, the disadvantage of this statement is the lack of suitable
B-dense subsets. In fact, in view of Theorem 2.6, Corollary 2.7 one should
weaken B-dense to R-dense. In this connection a first contribution to the
characterization of convergence on R reads as follows.

PROPOSITION 4.2. For {Fn } c R" let U c R be R-dense in R. Then (4.1)
is equivalent to (4.2), (3.13), and F := lim sup IFkl E R*.

Proof Of course, (4.1) implies (4.2), (3.13) (cf. Proposition 4.1) as well
as the R-continuity of F (well-defined by (3.13)) since F=O. Conversely,
the R-continuous F vanishes on the R-dense subset U, thus F= 0 on the
whole space. I

Returning to Proposition 4.1, obviously the boundedness of each Fn is
equivalent to the B-continuity of Fn , and (3.13) coincides with the equi
B-continuity of {Fn } (at the origin). It is therefore natural to expect
that a weakening to R-dense subsets corresponds to a strengthening of
B-continuity to R-continuity. In fact,

THEOREM 4.3. For {Fn } c R* let U c R be R-dense in R. Then (4.1) is
equivalent to (4.2) together either with the equi-R-continuity or with the
continuous R-convergence of {Fn }.

Proof For the sufficiency see Propositions 4.2, 3.3, 3.5. Concerning the
necessity let us apply the gliding hump method (see also [13, 14] for a
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Baire approach in the framework of Frechet spaces). First of all, (4.1)
implies (4.2) trivially and (3.13) by Proposition 4.2. Assume then that {Fn }

is not equi-R-continuous, thus not continuously R-convergent by
Proposition 3.3. In view of (3.17) there exists In! 0 such that

(n EN) (4.3)

(at least for a subsequence). Since FnER*, one also has (cf. (3.7))

lim Fn*(Ik) = O.
k ~ 00

(4.4 )

Therefore one may successively construct a subsequence {nk} c N with
n l = 1 such that

(4.5)

In view of Lemma 3.1 and (4.3) this implies that for h := Ink\Ink+l'

so that there exists fk E R, Ilfk II ~ 1 such that for gk := fkXJk'

IFnk gk I~ 80/2.

(4.6)

(4.7)

In view of (4.1) and gkER one may again select a subsequence {kp} c N
such that

p~1

hp _ 1 := L gkj'
j=1

(4.8)

Now the functions gk have disjoint supports (cJd so that {h p } is
equibounded by 1 (cf. (2.1)) with (q > p ~ m)

Ihq(x)-hp(x)1 = Ij~~+1 gkix )IXI.kp+l(x)~Xlnk",(x),

J sup Ihq-hpl ~Jl(Ink)=o(l) (m-+ (0).
q>p?::-m

Thus (2.9) is fulfilled and the proof of Proposition 2.4 and Theorem 2.5
yields that the pointwise limit (cf. (2.10))

p p

f(x) := lim sup L gkix )= lim L gkix )
p-.....HX) j=l p-CX,) j=l
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belongs to R. Now one obtains

by Lemma 3.1 and (4.5) so that by (4.7), (4.8),

79

IFnk/1 ;;:: IFnkp gkpI -lFnkphp~ ll-lFnkp(f - hp)1 ;;:: 80/4,

a contradiction to (4.1). I
Let us mention that the present general equivalence theorem (together

with Proposition 3.4) should be compared with results of [7] (see also [5]
for related material) which are concerned with functionals of the special
type JiqJn for integrable qJn-

Since quadrature rules are not R-continuous, Theorem 4.3 does not yet
cover P6lya's original result. But for this kind of functional R-continuity
may indeed be dropped.

THEOREM 4.4. Let {Qm} be a sequence of quadrature formulas (cf
(3.20». Then

if and only if

lim Qmf= Qf:= f f
m~ 00

(fER)

(gE C)

(4.9)

(4.10)

and {Qm} is continuously R-convergent.

Proof Essentially one may proceed as for Theorem 4.3 so that we only
indicate how to derive analogues of (4.3), (4.4) in connection with the
necessity. To this end, set L1 m := {Xkm: 1~ k ~m} so that

lim Q~(L1j) = 0
m~ 00

(jE N) (4.11 )

by (3.6) and (cr. (4.9»

lim Q~({x}) = lim IQmX{xj 1= 0
m--+oo m-+oo

(x E [a, b ]).

Again assume that {Qm} is not continuously R-convergent, Le., there exists
1m l 0 such that

640/55/1-6

(mE N). (4.12)
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Then one may successively construct a subsequence {m n } c N such that
(cf. (3.6), (4.11))

n-l

X n _ 1 := U L1 mk •

k~l

Now consider In:= Imn\Xn- 1 ! 0 and Fn := IQmn- QI. Then

Fn*(ln) ~ Q:'n(Imn) - Q:'n(Xn- d - Q*(ImJ ~ 80 ,

In view of (3.21) and IkcCL1mn for k~n+ lone has Q:'n(ld=O so that

lim Fn*(ld = lim Q*(ld = O.
k--4OO k-oo

Hence (4.3), (4.4) are fulfilled. I
The standard situation in applications is that well known classical results

establish convergence for polynomials or continuous functions.
Theorems 4.3, 4.4 then extend those results to all Riemann integrable
functions, provided continuous R-convergence can be established. Let us
illustrate the latter aspect in connection with the convergence of quadrature
(cubature) rules.

First, consider the compound formula (f E R[O, I])

(4.13)

with bk E iC, Xk E [0, 1] (see proof of Theorem 2.6 for the notations). It is
well known that Qmf converges to Qf on C if and only if the weights
satisfy (cf. [3, p.21]; by the way, the elementary argument there
immediately extends to R)

(4.14 )

COROLLARY 4.5. The compound quadrature procedure (4.13) satisfies
(4.9) if and only if (4.14) is valid.

Proof By Theorem 4.4 it is enough to check that {Qm} is continuously
R-convergent, thus to show (3.13), (3.18). But this is an immediate
consequence of (cf. (3.22))

A(I) = lim Q:'(I) = BJJ.(I) (IE V) (4.15 )
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with B:=L.k=llbk l. Indeed, setting
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J~:= U{Sim: Sim C I},

one obtains J~cIcJ~ and (cf. (3.21))

s

Q:(J~)=m-N L L Ibkl =BJ1(J~),
Sim elk ~ I

'0
Q:(J~)=m-N L L Ibkl=BJ1(J~).

S;",,,I#0 k~ I

But limm~ GO J1(J~) = J1(I) so that (4.15) follows in view of (3.5). I
Next consider positive quadrature formulas, i.e., akm > 0 in (3.20). It was

shown in [6J that such a process converges on R[ -1, 1J if it is
additionally interpolatory (so that trivially limn ~ 00 Qnxk = Qxk, k E P).
This result is now regained by

COROLLARY 4.6. If Qm is a positive quadrature formula, then {Qm}
satisfies (4.9) if and only if

lim Qm(x{I ... x~) = Q(x{' ., .x~),
m~ 00

for any multiindex (j I' ... , j N) E P N.

Proof Since the procedure {Qm} is posItIve and converges for
polynomials, it converges on C (cf. [3, p. 35J). To apply Theorem 4.4 let us
show that {Qm} is continuously R-convergent (and thus {Qm - Q}, too).
Now Q:(I) = QmXI so that (3.13), (3.18) follow if

(A(I) =) lim QmXI = QXI
m~ 00

( = J1(I)), (4.16 )

for any I E V, or even only for any subinterval 1:= [c, dJ c [a, b], since
Qm' Q are linear. To this end, first note that there exist h~ E C with

R- lim h~ = XI'
n~ 00

Indeed, take (cf. [6J)
N

h~(x) := f1 h;n(xj )

j~1
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with the trapezoidal functions (t E IR)

1

1,

h)n(t):= 0,

linear,

tE [cj + lin, dj-1In]

ti[cj,dj]

else,

1, tE [cj , dJ
ti [cj-1In, dj + lin]

linear, else.

Since Qm is positive and Q is R-continuous, one obtains

Qmh~ ~ QmX/~Qmh~,

QXI = lim Qh~ = lim lim Qmh~
n--oo n_oo m-+oo

(k = 1, 2);

thus (4.16) follows. I

5. R-CONVERGENCE OF OPERATORS

In this section we establish sufficient conditions for the R-convergence of
a sequence of operators and discuss some significant examples from
approximation theory. To this end, an operator T of R into itself is called
bounded if (cf. (3.2))

1IT11 :=sup{IITfIIB:fER, IIfIIB~ 1}

is finite. Then the operator (XE [a, b], cf. (3.4))

T*(l)(x) := sup{ ITUX/)(x) I:f E R, IIfll ~ 1} (5.1)

is well-defined not only for I E V but also for each Riemann measurable
subset, in particular for

(5.2)(<5 > 0, X E [a, b]).K,j,x:= {YE [a, b]: Iy-xi ~<5}

In these terms one has

THEOREM 5.1. Let {Tn} be a sequence of linear operators of R into itself.
Then the conditions

II Tn II = (D(1 ),

Tn 1 = 1,

R-lim Tn*(K,j,x)(x)=O (<5>0)
n~ 00

(5.3 )

(5.4)

(5.5)
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are sufficient for

R-lim Tnf=f (fER),

thus for {Tn} to be a linear R-approximation process on R.

Proof Consider the sublinear functionals
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(5.6)

Fn!:=Jsup ITkf - fl,
k~n

Ff := lim sup Fnf

By (5.3) these functionals are well-defined on Rand (5.6) coincides with
the statement that F = 0 on R. Let g E C with (first) modulus of continuity

w(g, 15) := sup{ Ig(u) - g(x)/ :u, x E [a, b], lu - xl ~ t5}.

For XE [a, b], 15>0 one obtains by (5.1}-(5.4) (with IITd ~M),

ITk g(x) - g(x)1 = ITk[g- g(x)](x)1

~ ITk[(g- g(x))xx.,J(x)1 + IITd II[g- g(x)] Xex.,J

~ 2 II gil Tl(Kox)(x) + Mw(g, 15).

By the peaking property (5.5) this implies

Fg~MJl([a,b]) lim w(g,t5)=O
o~O+

Now let 1E V, 15 > O. With

(ge C). (5.7)

10 := {xe [a, b]: there exists ye/with Ixj - yjl ~t5, 1~j~ N}

one has 10 e V and Jl(Io) -. Jl(I) for 15 -. 0 +. Moreover, 1c Ko.x for each
xeCIo so that (cf. (3.5))

But this yields

Fn*(I) ~Jsup Tk*(I) + Jl(I) ~Jsup Tk*(Ko.x)(x) dx + MJl(Io) + Jl(I),
k~n k~n

F*(I) ~ lim MJl(Io) + Jl(I) = (M + 1) Jl(I)
o~O+

so that F is R-continuous by Proposition 3.2. Therefore (5.7) and
Theorem 2.6 yield the assertion. I
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This theorem is indeed closely related to the classical approximate iden
tity argument (peaking property) of Fourier analysis and approximation
theory. To this end, let R 21t be the set of functions 2n-periodic in each
variable and Riemann integrable over [ -n, n] N. For {kn} C R21t consider
the convolution operators

(5.8)

{k n } is called an approximate identity (in the classical sense, cf. [4, p. 30])
if

f Ikn1= (D(l) (n -+ 00 ), (5.9)

fk n= 1 (n EN), (5.10)

lim f Ikn1=0 (<5 > 0). (5.11 )
n -. Cf) K~,o

Obviously, (5.9), (5.10) coincide with (5.3), (5.4), and (5.11) is equivalent
to (5.5) since

Hence Theorem 5.1 delivers (without any additional assumptions on k n )

THEOREM 5.2. Let {kn } cR2n satisfy (5.9H5.11). Then the convolution
operators (5.8) establish an R-approximation process on R 2n •

Note that Fnf:= SIkn * f - fl is equi-R-continuous in view of (5.9) and
(3.16).

It is important to observe that Theorem 5.1 does not assume any R-con
tinuity of the operators so that applications are possible, even if point
evaluation functionals are involved. For example, consider the Bernstein
polynomials for f E R[O, 1],

n

BJ:= L f(k/n)Pkn'
k=O

COROLLARY 5.3. The Bernstein polynomials constitute an R-approxi
mation process on R[O, 1].
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Proof Again the sufficient conditions of Theorem 5.1 are fulfilled since
in particular (cr. [9, p. 6]),

B:(I)(x) = L Pkn(X),
kin E I

L Pkn(X) ~ 1/4nc52 = 0(1)
Ikln-xl ;"J
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