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1. INTRODUCTION

The purpose of this paper is to introduce a concept of sequential con-
vergence in the space of Riemann integrable functions (in the classical
sense) and to discuss some consequences in approximation theory. In fact,
our approach originates in work of Polya [12] on the convergence of
quadrature formulas.

In [12] Polya first treated necessary and sufficient conditions for con-
vergence of quadrature formulas for continuous functions. From an
abstract point of view this is covered by the theorem of Banach-Steinhaus.
Polya then extended the results to Riemann integrable functions. Though
well known, too, this part of his treatment remained somewhat isolated, at
least to our knowledge. Among other things it follows, however, that if one
introduces an appropriate concept of convergence, then also this part of
Polya’s work may be reestablished by an application of a theorem of
Banach-Steinhaus-type.

The notion of convergence in question (for bounded functions of several
variables) is given in Definition 2.1. It not only turns out that the space of
Riemann integrable functions is (sequentially) complete, but continuous
functions are dense in it. The latter fact enables one to discuss
approximation,

In this connection our first topic is concerned with theorems of Banach—
Steinhaus-type. Here the situation is rather clarified for (sublinear)
functionals. To this end, Section 3 first relates various concepts of con-
tinuity. Then Theorem 4.3 states that a sequence of sublinear, Riemann
continuous functionals converges for each Riemann integrable function if
and only if it converges for each element of a Riemann dense subset and if
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the sequence is equi-Riemann-continuous or continuously Riemann con-
vergent. Since, however, point evaluation functionals cannot be Riemann
continuous, this does not yet cover Polya’s result. But it can be shown
(cf. Theorem 4.4) that continuous Riemann convergence, which in fact
reflects the original Poélya condition on the semicontinuity of some
“Intervallvereinfunktion,” is the appropriate notion to formulate an
equivalence assertion even for quadrature (cubature) formulas.

Section 5 considers the extension of the classical approximate identity
argument (peaking property) in order to derive a sufficient criterion for the
Riemann convergence of a sequence of operators, mapping the space of
Riemann integrable functions into itself. Since Theorem 5.1 does not
assume any Riemann continuity, applications are even possible if point
evaluation functionals are involved, thus, e.g., to Bernstein polynomials (cf.
Corollary 5.3).

Along the same lines many other topics of approximation theory may
now be extended to Riemann integrable functions. See [10a-c, 15-17] for
some further material.

2. RIEMANN CONVERGENCE

Let N, P, R, C denote the set of natural, non-negative integral, real, and
complex numbers, respectively, and let RY, NeN, be the Euclidean N-
space with |x|* =Y, x;7. In the following consider a (fixed, non-trivial)
compact interval [a, b] where a, b€ R” are such that a;<b,. Let V denote
the family of finite unions of (not necessarily closed or disjoint) subinter-
vals, also called “Intervallvereine” in [12] or elementary sets in {2, p. 252].
Thus V is an algebra, ie., InJ, IuJ, and the complement C / belong to V
ifI,JeV.

Concerning integrals, the upper and lower Riemann integrals of fe B=
B[ a, b], the space of functions, everywhere defined and bounded on [a, 5]
with norm || f| = {|f]l 5 :=sup{|f(x)|:x € [a, b]}, are denoted by

[£=]  soax [r=] rea

J—[a,b]
respectively. By Riemann’s criterion f€ B is Riemann integrable on [a, b],

i, fe R=R[a, b], if and only if T f=1{, in which case one has for the
Riemann integral, -

[r=f  rwax=[r(=]r).
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For arbitrary 4 < [a, b] let x, be the characteristic function, ie., y(x)=1
if xe A and =0 otherwise. The outer and inner Riemann measure (Jordan
content) may then be defined by

a(A) :=IXA=inf{u(I):Ie V, 1> A4},

H(A):=J‘x,,=sup{,u(l):le V,Ic A},

respectively, where u(f) := [y, is the elementary content. Note that A is
Riemann measurable if and only if ji(4) = u(A). In this case y 4 € R and the
Riemann measure of A is given by u(A4)=] y,.

Clearly, CcRc B where C=C[a,b] is the space of continuous
functions on [q, b]. In fact, each of these spaces, thus in particular R, as
endowed with ||-||, is a Banach space. But this norm is not appropriate for
approximation in R since, e.g., C is not dense in R. This disadvantage is
avoided by the following concept of sequential convergence, in fact even
well-defined on B.

DEFINITION 2.1. A sequence {f,} < B is called (Riemann) R-convergent
to f€ B (in notation, R-lim f, = )} if, for n » oo,

I£a 1l = (1), (2.1)

[ sup 1= 11=0(1). (2.2)

kzn

Obviously, (2.1) ensures the existence of the integral in (2.2). Moreover,
R-convergence is linear since f |f] is a seminorm on B. In the following,
I, | 0 denotes a sequence I, V with I, , </, and u(l,)=o(1).

PROPOSITION 2.2. Let {f,} = B satisfy (2.1) and let f € B. The following
assertions are equivalent (n — o0):

(1) R'limn—»oofn=f:
(ii) For each ¢>0,

A{xe[a b]:sup | felx) — f(x)] > €})=o(1). (23)

kzn
(iii) Lebesgue almost everywhere on [a, b],

a(sup |fi— f1, x) = o(1), (24)

k=zn
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where o is defined for ge B and x e [a, b] by

o(g x):=inf sup [g(y)l. (2.5)
00 etatl

(iv) For each £>0 there exists I,| 0 such that

Ifu(x)—flx)l<e  (xell,)

Proof. For abbreviation set

ho=sup |fi—fl, B :={xe[a b):h(x)>e}.

kzn
Then (i) implies (ii) since for ¢ >0,

BB = 1< [ by <o | By =o(1)

On the other hand, if (ii) is fulfilled, then for each ¢ >0,

[ 1< [ s + [ a1 = ) <1, £(BE) + (T, 5])

so that (i) follows in view of (2.1), (2.3).
Concerning (ii) <> (iii), let us first show that (4 denotes the closure of 4)

BicC::={xe[a, b):a(h,, x)>¢e}c B~ (2.6)

Indeed, if xel—B’E, then for each 4 >0 there exists ze B¢ with |z — x| <.
Thus x € C¢ since

sup  h,(y)=h,(z) e

ly—x|<8

Moreover, xeC: implies that for any 6>0 there is ye B> with
| y— x| <4, thus xe BY2 Let 04 denote the boundary of A < [a, b]. Then
f(0A4) = p(A) — u(A4) (cf. [2, p. 256]) so that ji(A) < A(A) < 2(4). Since 4
is compact, one also has ji(4)= A(A4) with outer Lebesgue measure 1 (cf.
[2, p.259]). In view of (2.6) this implies that (2.3) is equivalent to
A(C2)= (1) for each ¢ >0, thus if and only if

A:={xe[a b]: in"gl o(h,, x)>0}= ) () CY/m

m=1 n=1

is of Lebesgue measure zero, hence (iii) since a(h,, x) decreases.
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If (iv) is satisfied, then B%c I, since C I, = C I, for k > n, thus (ii) follows
in view of u(l,)=e¢(1). On the other hand, if i(B:)= (1), there exists
J,eV with B < J, and u(J,) < f@i(B%) + 1/n. Setting I, :=N;_, J, €V, one
has I,,,=1,nJ,, so that I,| 0 and

B:= () Bic () Ju=1,
k=1 k=1
This yields (iv). [

At this point let us compare the Riemann convergence with the usual
ones of Lebesgue theory. First of all, the use of the monotone quantity
SUPk» . | fx — f| compensates the missing countable additivity of the algebra
of Riemann measurable sets. In many proofs the equiboundedness (2.1)
serves as a substitute for arguments, based on Lebesgue dominated con-
vergence. Obviously, uniform convergence, i.e., convergence in B-norm,
implies R-convergence. On the other hand, R-convergence as induced on R
in particular implies j'l f.—f1=0(1), thus convergence in L'(a, b)-norm.
In fact, (2.1), (2.2) strengthen L'-convergence on R to ensure that limits
continue to stay in R (cf. Theorem 2.5). Moreover, pointwise convergence
Lebesgue almost everywhere is a consequence of (iii), thus of R-con-
vergence. Assertion (ii) may be compared with convergence in measure and
(iv) with almost uniform convergence.

Of course, the structure of the two conditions (2.1), (2.2) is also connec-
ted with abstract concepts like those of two-norm convergence or Saks
spaces (cf. [1, 11]).

Note that Definition (2.5) is closely related to that of the oscillation

o(g, x):= inf sup {|g(y)—g(z)l: y,ze[a,b], |y —x] <§, |z — x| <}.
(2.7)

In this connection Conditions (ii) and (iii) look rather similar to the two
versions of Lebesgue’s theorem concerning Riemann integrability (cf. [2,
pp- 230, 259]).

As in Lebesgue theory the limit of an R-convergent sequence is not
unique so that the following gives rise to the introduction of the
equivalence classes

11i={geB:f 17— gl=0}. 28)

Lemva 23. Let f, g, f,€ B with Rlim f,=f. Then R-limf,= g if and
only if ge[f]
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Proof. The equivalence immediately follows by the inequalities

Jir—sei<sup =i+ [sup1s-fil

fft;p Ifk—gISf:l:pn lfk—f|+f|f—gl- 1

Obviously, each R-convergent sequence {f,}<B is an R-Cauchy
sequence, i.e., satisfies (2.1) and

nlirr;J‘ sup |f,— fi| =0, (29)

Jkzn

In fact, the converse is valid as well.

PROPOSITION 2.4. B is (sequentially) R-complete.
Proof. Let {f,} < B satisfy (2.1), (2.9). Setting

f(x) :=lim sup f,(x), (2.10)

n-— oC

it follows by (2.1) that fe B with
|felx) = f(x)| <sup | filx) — f(x)|  (neN).

Jzn

In view of (2.9) this yields (n — o)

[sup1fi=s1<| sup 1=l =e1),

k=n Jk=n
thus R-lim f, =1 |

As already mentioned, it is useful to have R-convergence well-defined on
the whole set B, but R-convergence turns out to be particularly significant
when considered on the subset R.

THEOREM 2.5. R is (sequentially) R-complete. Moreover, [ f]1< R if and
only if fe R

Proof. Let {f,} < R be an R-Cauchy sequence. By Proposition 2.4 {f, }
is R-convergent to some fe€ B. To show that even fe R, by Riemann’s
criterion (cf. [2, p. 254])

o<([-[)r=(J-])u=-m<2[ir-n1=om,



SEQUENTIAL CONVERGENCE 71

thus fe R. Moreover, if ge [ f] with fe R, then

o<([-])r-p1<2]ir-ei=o

thus f — ge R, and therefore ge R, too. |

From the point of view of approximation, the most important feature of
R-convergence is the fact that the R-closure of standard classes of smooth
functions yields R (and not B). In fact,

THEOREM 2.6. C is R-dense in R.

Proof. Obviously, one may restrict oneself to the unit cube
[a,6]1=[0,1], T:=(1, .., 1) R". For one-dimensional te [0, 1] define

L—lj—ntl, |j—ni<1
gnl1) {0, else (2.11)
so that g, is continuous with
Y gu=1  (te[0,1]). (212)
i=0

For a multiindex ie I', := {(i}, .., iy)eP":i;<n} set (xe[0,1], feR)

Gu(¥) =11 giulx))  Tuf(x):= 3 flifn) Gu(x).

iel,
Then T, is a positive, linear operator with (cf. (2.12))
T,1= Z Gu=Y &in Y gin=1 (2.13)
iel, i1=0 in=0

Now let fe R. To show that the continuous functions g, :=T,.f are
R-convergent to £, first of all note that || T, f|| < | £ (cf (2.13)), thus (2.1).
In view of Riemann’s criterion,

z (Minf_minf)nVN=:5n=0(l),

iel,_

Minf:= sup f(X), minf:= inf f(X),

x €Sy x € Sin

S :=[i/n, (i+1)/n] denoting the subintervals of the given equidistant
partition. For ¢>0 and

Ay = {Si: My f—m,, f2>6/2}
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one therefore has that

2
AA)= Y aN<E Y (M f—muf)n "=28,/=o(1)

Minf—mp f2 /2 ielp_

(2.14)

On the other hand, if xeC A4,, there exists ioe I',_, such that xe S, , and

ion

M, f—m,,f<e/2. Then G,(x)#0 only if i/ne S,,. Therefore (cf. (2.13))

ion*

T, f()=fI< X 1f(i/n) = f(x)] Gulx)

ilne S,‘on

< Z (Mionf'—mionf) Gin('x)<8/2‘

i/neS,O,,
Now consider the subsequences 7, and Ax€e V. Since {S; i€l _,}
corresponds to a refining family of partitions, 4..| 0 by (2.14) with
T fx)— fx)|<e/2<e  (xeCAp)
Hence condition (iv) of Proposition 2.2 is satisfied and the assertion is
shown. ||

Let us emphasize that the continuous functions g, = T, f, approximating
feR, are defined via the multivariate spline operator 7,, the knots of
which are independent of f. So this constructive proof yields a first
approximation process. Moreover, with a slight modification to g, in
(2.11), for example, g,, == X[ i+ 1) the above proof delivers

CorOLLARY 2.7. The set of step functions
g=2 %1, (yeC,LeV)
finite
is dense in R.

Summarizing, Theorems 2.5, 2.6 finally justify the terminology: it is R
which not only is R-complete, but, e.g., polynomials are (B-dense in C and
therefore) R-dense in R.

3. FUNCTIONALS ON R

Let R"=R'[a, b] be the set of sublinear functionals F on R= R[a, b],
ie.,

|F(f+ ) < |Ff|+|Fgl,  |F(af)] = ol |FS1, (3.1)
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for f, ge R, e C. Concerning continuity, recall that R is indeed endowed
with two concepts of convergence: uniform convergence (i.e., in B-norm)
and R-convergence. Accordingly, two classes of continuous functionals are
distinguished: R* = R" [a, b], the subclass of functionals, B-continuous at
the origin (|F| is B-continuous on R) or, equivalently, bounded on R,

R» :={FeR"||Fll=|Fllgr :=sup{|Ffl:feR, |flg<1} <0}, (32)

and R* = R*[aq, b], the subclass of functionals, (sequentially) R-continuous
at the origin, i.e.,

R*:={FeR':f,eR R-lim f,=0= lim Ff,=0}. (3.3)
Note that, if Fe R* is linear, then F is R-continuous at each f e R, thus for
any sequence {f,} = R the implication

R-lim f,=f= lim Ff,=Ff

n-—» o

holds true. Since uniform convergence implies R-convergence, each Fe R*
is bounded, thus R*< R* < R’
With Fe R” let us associate the functional

FX(I):=sup{|F(fx)|:feR |fI<1} (IeV) (3.4)
Obviously, F*([a, b])= || Fll.
LEMMA 3.1. Let Fe R". Then F* is monotone and subadditive on V, i.e.,
for I JeV,
FX(I)< F*(J) (IcJ), (3.5)
FX*(Io)y< F*()+ F*(J). (3.6)
Proof. Let feR with | f|| < 1. If I J, then (3.5) follows in view of

F(fa )l = 1F((f) 1)l SF*(J)

since x,=y,x, and | fx,||<1. On the other hand, Xros= X1+ X\ for
arbitrary I, Je V so that

F*(TOYSF¥D)+ FX*(I\)< FXI)+ F*(J)

since F is subadditive. |
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PROPOSITION 3.2. Fe R’ belongs to R* if and only if Fe R" and
F*(I,)=e(1)  (1,10). (3.7

Moreover, for Fe R" the condition

IFI<K[Ifl  (feR) (38)

is sufficient for Fe R*.

Proof. Let FeR" satisfy (3.7) and assume {f,} <R be such that
R-lim f,=0. Then || f,|| <M by (2.1) and by Proposition 2.2(iv) for any
£>0 there exists I, | 0 with | f,(x)] <¢ on CI,. This implies

|| S VF(f )| + 1 F(faxen,) S MFX(1) + || Flle,

thus Ff,, = »(1). To establish the converse, assume that (3.7) is violated, i.e.,
F*(1,)=2¢,>0 for some I,]0 and all ne N (cf. (3.5)). By Definition (3.4)
there are f, e R with ||f, || <1 and |F(f,x,)| >¢&,. But g, :=f,x, is R-con-
vergent to zero since

leal <t [sup gl <[ suplfil 2, <ull,) (39)

kzn kzn

which contradicts Fe R*. Concerning the supplement, note that (3.8)
implies

FX(D< sup K| 1fi/| =Ku(). 1

PSS!

For example, the Riemann integral Qf :={ f is R-continuous by (3.8)
(or, since Q*(I) = u(l)). On the other hand, the point evaluation functional
at xoe [a, b],

Fofi=flx0), (feR) (3.10)

is certainly bounded (and B-continuous), but F, is not R-continuous.
Indeed, for f,=yx,; one obviously has f,eR with R-limf,=0 but
F.f.=1

A sequence {F,} < R’ is called equi-R-continuous if

f.eR,  R-lim f,=0=>sup |F, f,] = o(1). (3.11)

keN
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It follows that indeed sup, [F,| € R*. A sequence {F,} < R’ is said to be
continuously R-convergent (at the origin) if (cf. [8, p. 197])

f.eR  R-lim f,=0=F,f,=o(1). (3.12)

ProposiTION 3.3. A sequence {F,} = R’ is equi-R-continuous if and only

if F,e R* for each ne N and {F,} is continuously R-convergent. Moreover,

continuous R-convergence of {F,} = R" necessarily implies equi-B-continuity
(at the origin), thus the uniform boundedness,

IF, Il <M (neN). (3.13)

Proof. Obviously, (3.11) implies (3.12). Conversely, assume that (3.11)
does not hold true so that there exists f,€ R, R-lim f, =0 such that for
some &, > 0 (at least for a subsequence),

sup |Ff,| = 2¢>0 (neN).

keN

This implies |F, f,|>¢, for some k,eN. The subsequence {k,} is
unbounded since, if £, < K, then

f0<|Fiful <F, 1= max |Ff,, (3.14)

but Ff,,=o(1) in view of Fe R*, a contradiction. Hence there is a sub-
sequence {k,}, strictly increasing to infinity. Since each subsequence of
{F,} is contlnuously R-convergent too, one has Fk,. Ju,=o(1), in contrast
to (3.14). Concerning (3.13) suppose that [|F,| — ‘0. Then there exists
f.€R with || f,] <1 and |F,f,| = . Since g,:=/f,/|F,f.|""* is R-con-
vergent to zero, in fact even uniformly, and since |F, g,| = |F, f,|'* = o,
this violates (3.12). |

PROPOSITION 3.4. A sequence {F,} = R’ is, equi-R-continuous if and only
if it satisfies (3.13) and

sup F*(1,)=»(1)  (Z,10). (3.15)

keN

Moreover, a sufficient criterion for (3.11) is given by (3.13) together with
(¢f (3.8))

IFA<K[1fl (feR). (3.16)

Proof. The assertions are an easy consequence of Proposition 3.2 as
applied to F:=sup, |Fy| since F*(I)=sup, F*(I). |
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PROPOSITION 3.5. A4 sequence {F,} < R" is continuously R-convergent if
and only if it satisfies (3.13) and one of the following properties:

Frl)=0(1)  (1,]0), (3.17)
lim sup F*(I,) = #(1) (1,10). (3.18)

k— oo
Moreover, (3.12) for {F,} = R" necessarily implies that the functional

F:=lim sup |F| (3.19)

k — oo
belongs to R*.

Proof. Let {F,}<R" satisfy (3.12). Then (3.13) is necessary by
Proposition 3.3. Assume that (3.18) is violated. Then there exists 7, } 0 such
that

lim sup F¥(1,) = 2¢4>0,

k—
for infinitely many n e N, thus for all ne N by Lemma 3.1. This implies that
there are a subsequence F, and elements f,eR with |f,|<1 and
|Fy (fax1)l = €. Since g, :=f,x,, is R-convergent to zero (cf. (3.9)), the
subsequence {F, }, and hence {F,} too, is not continuously R-convergent,
a contradiction. Now (3.18) implies (3.17) since for a given sequence I, ]0
one has by Lemma 3.1

FrIL)<FXIL,)  (k=n),
lim sup F}(I,) <lim sup FX(1,) = #(1) (n— ).

k - oo k — o0

That (3.13), (3.17) are sufficient for (3.12) follows analogously from the
first part of the proof of Proposition 3.2 (take F=F,) so that the
equivalence assertion is established. Concerning the R-continuity of F (cf.
(3.19)), by Proposition 3.2 it is enough to observe that Fe R* by (3.13)
and that F*(I)<lim sup FX*(I). |

As a typical example let us consider the quadrature (cubature) formula
Onf =Y Gmf(Xim)  (@m€C, xym€ [a,b]) (3.20)
k=1

which is certainly bounded but not R-continuous (cf. (3.10)). Since

QxD= Y lawml  (eV), (3.21)

Xim€ 1
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Condition (3.18) corresponds to the original one of Polya [12] on the
semicontinuity of the associated “Intervallvereinfunktion”

A(I) :=lim sup Qx([) (IeV). (3.22)

m - o

4. THEOREMS OF BANACH-STEINHAUS-TYPE

Let us start with the classical Banach-Steinhaus theorem as applied to
the Banach space R under B-norm.

ProroSITION 4.1. For {F,} = R" let Uc R be B-dense in R. Then

F,f=0(1) (feR) (4.1)

is equivalent to (3.13) and

Fog=0(1) (gel). 4.2)

Of course, the disadvantage of this statement is the lack of suitable
B-dense subsets. In fact, in view of Theorem 2.6, Corollary 2.7 one should
weaken B-dense to R-dense. In this connection a first contribution to the
characterization of convergence on R reads as follows.

PROPOSITION 4.2. For {F,} < R" let Uc R be R-dense in R. Then (4.1)
is equivalent to (4.2), (3.13), and F :=lim sup |F,| € R*.

Proof. Of course, (4.1) implies (4.2), (3.13) (cf. Proposition 4.1) as well
as the R-continuity of F (well-defined by (3.13)) since F=0. Conversely,
the R-continuous F vanishes on the R-dense subset U, thus F=0 on the
whole space. |

Returning to Proposition 4.1, obviously the boundedness of each F, is
equivalent to the B-continuity of F,, and (3.13) coincides with the equi-
B-continuity of {F,} (at the origin). It is therefore natural to expect
that a weakening to R-dense subsets corresponds to a strengthening of
B-continuity to R-continuity. In fact,

THEOREM 4.3. For {F,} < R* let Uc R be R-dense in R. Then (4.1) is
equivalent to (4.2) together either with the equi-R-continuity or with the
continuous R-convergence of {F,}.

Proof. For the sufficiency see Propositions 4.2, 3.3, 3.5. Concerning the
necessity let us apply the gliding hump method (see also [13,14] for a
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Baire approach in the framework of Fréchet spaces). First of all, (4.1)
implies (4.2) trivially and (3.13) by Proposition 4.2. Assume then that {F,}
is not equi-R-continuous, thus not continuously R-convergent by
Proposition 3.3. In view of (3.17) there exists 7, 0 such that

FX1,)=2¢e>0 (neN) (4.3)

(at least for a subsequence). Since F, e R*, one also has (cf. (3.7))

lim F*(I,)=0. (4.4)

k - o0

Therefore one may successively construct a subsequence {n,} <N with
n, =1 such that

Fx(1,, . )<¢g/8. (4.5)

In view of Lemma 3.1 and (4.3) this implies that for J, :=I,\I, ,

Fa(J) 2 Fal,)—Fi(l, )= 7e/8 (4.6)

k+ 1

so that there exists f, € R, | fi |l <1 such that for g, :=fix,,.

|Fnkgk|>80/2- (4.7)

In view of (4.1) and g, e R one may again select a subsequence {k,} =N
such that

p—1
\Fo by 11 <E0/8,  hpyi= ) 8k (4.8)
Jj=1

Now the functions g, have disjoint supports (<J,) so that {h,} is
equibounded by 1 (cf. (2.1)) with (g>p=m)

i gk,-(x)

j=p+1

Iy(x) — hy(x)| = K, (X)L (3,

[ sup 1h,—hl<uil, )=0(1)  (mo )

q>pzm

Thus (2.9) is fulfilled and the proof of Proposition 2.4 and Theorem 2.5
yields that the pointwise limit (cf. (2.10))

fx)=limsup 3, gy(x)= lim ¥ gy(x)
P_‘mj_:l

p—>oo =1



SEQUENTIAL CONVERGENCE 79

belongs to R. Now one obtains

f_ hp= (f'—hp) Xl,,kas
(P (=B <L (I, )< F2 (L ) <50/8

k;z+l

by Lemma 3.1 and (4.5) so that by (4.7), (4.8),
IFnkpr 2 |Fnkp gk,,l - |Fnkphpv1| - |Fnkp(f'_hp)| ?80/4,

a contradiction to (4.1). |

Let us mention that the present general equivalence theorem (together
with Proposition 3.4) should be compared with results of [7] (see also [5]
for related material) which are concerned with functionals of the special
type | fo, for integrable ¢,.

Since quadrature rules are not R-continuous, Theorem 4.3 does not yet
cover Polya’s original result. But for this kind of functional R-continuity
may indeed be dropped.

THEOREM 4.4. Let {Q,} be a sequence of quadrature formulas (cf.
(3.20)). Then

lim Q./=0=[f (feR) (49)
if and only if
mlijnw 0.8=0g (ge() (4.10)

and {Q,,} is continuously R-convergent.

Proof. Essentially one may proceed as for Theorem 4.3 so that we only
indicate how to derive analogues of (4.3), (4.4) in connection with the
necessity. To this end, set 4,, := {x;,,: 1 <k <m} so that

lim QX4,)=0 (jeN) (4.11)

m-— ©

by (3.6) and (cf. (4.9))

lim QX({x})= lim Q,1q|=0 (ve[ab])

Again assume that {Q,,} is not continuously R-convergent, i.e., there exists
1,10 such that

1) =2e>0 (meN). (4.12)

640/55/1-6
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Then one may successively construct a subsequence {m,} =N such that
(cf. (3.6), (4.11))

n—1

Q:"(Xn71)+#(1m,,)<80, Xn—l = U Amk'

k=1

Now consider 7, :=1,,\X,_, 10 and F,:=|Q,, — Q|. Then
Fn*(in) 2 Q:;,,(Im,,) - Q::,,(an l) - Q*(Im,,) 2 €.
In view of (3.21) and T, =C 4,, for k>n+1 one has Q% (T,)=0 so that

lim FXI,)= lim Q*({,)=0.
k—

k—

Hence (4.3), (4.4) are fulfilled. |

The standard situation in applications is that well known classical results
establish convergence for polynomials or continuous functions.
Theorems 4.3, 4.4 then extend those results to all Riemann integrable
functions, provided continuous R-convergence can be established. Let us
illustrate the latter aspect in connection with the convergence of quadrature
(cubature) rules.

First, consider the compound formula (f e R[0, 1])

0. f=m 3 Tas(HX) ey

ielm_y k=1

with b, € C, x,€[0, 1] (see proof of Theorem 2.6 for the notations). It is
well known that Q,,f converges to Qf on C if and only if the weights
satisfy (cf. [3, p.21]; by the way, the elementary argument there
immediately extends to R)

Y be=1. (4.14)
k=1

COROLLARY 4.5. The compound quadrature procedure (4.13) satisfies
(4.9) if and only if (4.14) is valid.

Proof. By Theorem 4.4 it is enough to check that {Q,} is continuously
R-convergent, thus to show (3.13), (3.18). But this is an immediate
consequence of (cf. (3.22))

A= lim Q*()=BuI) (IeV) (4.15)
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with B:=33_, |b;|. Indeed, setting
Jilrr:=U{Sim:SimC1}’ Jr2n:=U{Sim:Simn]5£@}

one obtains J, c I<J? and (cf. (3.21))

o) =m " T Y bl =Bu(Jb),

Simcl k=1

QLB)=m~" ¥ Y lbel=BulJ2)

Smnl#F k=1

But lim,,, , ., u(J%) = u(I) so that (4.15) follows in view of (3.5). |

Next consider positive quadrature formulas, ie., a,, >0 in (3.20). It was
shown in [6] that such a process converges on R[—1,1] if it is
additionally interpolatory (so that trivially lim,_, , Q,x*=Qx*, keP).
This result is now regained by

COROLLARY 4.6. If Q,, is a positive quadrature formula, then {Q,}
satisfies (4.9) if and only if

lim Q,(xf - xff) = Q(xf - xf),

Sor any multiindex (j,, .., jy)e P".

Proof. Since the procedure {Q,} is positive and converges for
polynomials, it converges on C (cf. [3, p. 35]). To apply Theorem 4.4 let us
show that {Q,,} is continuously R-convergent (and thus {Q,, — 0}, too).
Now Qx(I)=0,,x; so that (3.13), (3.18) follow if

(A=) lim Q. x,=Qx;  (=p(I)), (4.16)

for any Ie V, or even only for any subinterval I:= [c,d] < [a, b], since
Q.»» Q are linear. To this end, first note that there exist 4 e C with

R-lim hk=y,  hi<y, <k

n-— oC

Indeed, take (cf. [6])

Hex) = 1 Heix,)
i=1
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with the trapezoidal functions (€ R)

1, telc;+1/n,d;—1/n]
hi(t) = {0, t¢[c;, d]

linear, else,

1, tefc;, d;]
h.(1) == (O, té[c,—1/n,d;+ 1/n]

linear, else.

Since Q,, is positive and Q is R-continuous, one obtains

thplngmXISthfn’
Qy,= lim Qh*= lim Lm Q, k% (k=1,2);

thus (4.16) follows. ||

5. R-CONVERGENCE OF OPERATORS

In this section we establish sufficient conditions for the R-convergence of
a sequence of operators and discuss some significant examples from
approximation theory. To this end, an operator T of R into itself is called
bounded if (cf. (3.2))

1T :=sup{liTflls:feR || flls<1}
is finite. Then the operator (x € [q, b], cf. (3.4))
T*(I)(x) == sup{|T(fa)(x):fe R | f <1} (5.1)

is well-defined not only for 7e V' but also for each Riemann measurable
subset, in particular for

Ks,.:={yelabl:|ly—x|=0d} (0>0,xe[a, b)) (5.2)
In these terms one has

THEOREM 5.1. Let {T,} be a sequence of linear operators of R into itself.
Then the conditions

1T, =0(1), (53)
T,1=1, (5.4)
R-lim THK, )(x)=0 (6>0) (5.5)

n— oc



SEQUENTIAL CONVERGENCE 83

are sufficient for

R-lim T,f=f (feR), (5.6)

thus for {T,} to be a linear R-approximation process on R.

Proof. Consider the sublinear functionals

F,,f:=fsup|ka—f|, Ff :=limsup F, f.

kzn n— o

By (5.3) these functionals are well-defined on R and (5.6) coincides with
the statement that F=0 on R. Let g e C with (first) modulus of continuity

(g, 8) :=sup{| g(u)— g(x)|:u, xe [a,b], lu—x| <5}.
For xe[a, b], 4 >0 one obtains by (5.1)-(5.4) (with | T || < M),

| T g(x) — g(x)| =T, [ — g(x)1(x)|
<ITe (g — 8(x)) 2k, J + 1 Tl 108 — 8(¥) ] Xes
<2 gl THK; N x) + Mao(g, 9).

By the peaking property (5.5) this implies
FgSMu([a,b])élim w(g, 8)=0 (ge ). (5.7)
=0+

Now let 7e V, 6 >0. With
I5:={x¢€[a, b]: there exists y e I with |x;— y,| <4, | <j< N}

one has I;e V and u(ls) — u(I) for 6 > 04. Moreover, Ic K, , for each
xeC I so that (cf. (3.5))

TAD() < TA(Ks)(x)  (xeCly)
But this yields
FA()< [ sup TA(D) + p1) < [ sup TE(K;)(x) dx+ Mu(ly) + (1),
k=n kzn

FAD< lim Mu(T;)+p()=(M+1) u(1)

so that F is R-continuous by Proposition 3.2. Therefore (5.7) and
Theorem 2.6 yield the assertion. ||
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This theorem is indeed closely related to the classical approximate iden-
tity argument (peaking property) of Fourier analysis and approximation
theory. To this end, let R,, be the set of functions 2n-periodic in each
variable and Riemann integrable over [ —=, n]". For {k,} < R,, consider
the convolution operators

T f)=kyx f(x)i= [ k(x—u)f@du  (feRy). (58)

[—mal¥

{k,} is called an approximate identity (in the classical sense, cf. [4, p. 30])
if

[lkd=00) (1), (59)
fk,,: (neN), (5.10)
lim f k| =0 (6>0). (5.11)

n— o K(i.o

Obviously, (5.9), (5.10) coincide with (5.3), (5.4), and (5.11) is equivalent
to (5.5) since

THK )W =| k| (xe[-m ).

Ks.0
Hence Theorem 5.1 delivers (without any additional assumptions on k,,)

THEOREM 5.2. Let {k,} < R,, satisfy (5.9)~(5.11). Then the convolution
operators (5.8) establish an R-approximation process on R,,.

Note that F, f:={ |k, f — f| is equi-R-continuous in view of (5.9) and
(3.16).

It is important to observe that Theorem 5.1 does not assume any R-con-
tinuity of the operators so that applications are possible, even if point
evaluation functionals are involved. For example, consider the Bernstein
polynomials for /e R[O, 1],

n

Bfi= 3 e pul0)= () ) ¥H(1 -
k=0

COROLLARY 5.3. The Bernstein polynomials constitute an R-approxi-
mation process on R[0, 1].
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Proof. Again the sufficient conditions of Theorem 5.1 are fulfilled since
in particular (cf. [9, p. 6]),

By

1
2

oW

10a.

10b.

10c.

11.
12.
13.
14.

15.

16.

17.

(D(x)=Y, Pun(x), Y p(X)<1/4nd2=0(1)  (n-> o). |

kinel lk/n— x| =6
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